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Abstract. The very recently improved treatment proposed by Tucker on the Honmura- 
Kaneyoshi exponential operator technique is herein extended to treat the anisotropic 
Blume-Emery-Griffiths model. I t  is shown that this procedure leads to an exact set 
of mutually coupled equations which can explicitly and systematically include effects of 
correlations. The method is illustrated in a honeycomb lattice by employing its simplest 
approximate version, in which multispin correlations are neglected. Within this framework 
we find that the transition temperature is double valued under certain conditions of 
competing bilinear and biquadratic interactions, suggesting the occurence of re-entrant 
behaviour in both first- and second-order phase boundary lines. 

The anisotropic Blume-Emery-Griffiths (BEG) model (Blume et aE 1971) is a spin-one 
Ising system with both bilinear and biquadratic interactions in which a single-ion 
uniaxial crystal field anisotropy is included. The model without single-ion anisotropy 
term is called the isotropic BEG model while the one with vanishing biquadratic 
interactions is often referred as the Blume-Cape1 (BC) model (Blume 1966, Cape1 
1966). Both BEG and BC models have extensively been studied in the literature (for 
papers published before 1984, see for instance the review article of Lawrie and Sarback 
1983) because they play a fundamental role in the multicritical phenomena associated 
with physical systems such as 3He-4He mixtures, multicomponent fluids, ternary alloys, 
and metamagnets. 

The Hamiltonian of the anistropic BEG mode is defined by 

where J,, Jh and D are the bilinear, biquadratic and anisotropy parameters, respectively. 
Each Si takes the value +1 and 0, and the summation is going to be carried out only 
over nearest-neighbour pairs of spins. 

In a very recent paper Tucker (1988) has revised the application of the differential 
operator technique of Honmura and Kaneyoshi (1979) to the isotropic BEG model 
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and pointed out that a previous version of the formalism presented by Siqueira and 
Fittipaldi (1985) should be improved if the Honmura-Kaneyoshi-type effective-field 
equations were treated more correctly. In fact he succeeded in taking exactly into 
account all the relevant local (single-site) spin kinematic relations of the spin-one 
subspace (such as S,2"+' = S, and S,Zn = S?; n = 1,2), which has improperly been 
overlooked in the earlier Siqueira and Fittipaldi (1985) version of the theory. As a 
result he was able to generate a much more improved effective-field approximative 
approach which leads to results quite superior to those previously obtained within the 
same framework (Chakraborty 1984, 1988, Fittipaldi and Siqueira 1986, Kaneyoshi 
1987). In particular, it was found by Tucker (1988) that his new treatment of the 
effective-field equations provides results that resemble those of the cluster variational 
method in pair approximation (Tucker 1987) and of other approximative procedures 
(De Alcantara Bonfim et a1 1985, 1986). His work, however, was devoted only to 
the analysis of the isotropic BEG model as well as restricted to the formulation of 
the method up to some stage at which the possibilities of including the effects of 
correlations were overlooked. 

The main purpose of this paper is to employ the correct procedure used by Tucker 
(1988) in order to present a somewhat more complete formulation of the theory in 
an extended spin-one Ising model described by the system Hamiltonian in (1). In 
contrast with the isotropic case, the anisotropic BEG model describes an interesting 
system since it may present, under certain conditions, a tricritical point at which the 
system exhibits a first-order phase transition. Here a general statistical-mechanical 
treatment for the anisotropic BEG model is presented, within the framework of the 
differential operator technique of Honmura and Kaneyoshi (1979). We point out that 
this method leads to an exact set of mutually coupled equations which is particularly 
amenable to systematic approximations including the effect of correlations. Here as an 
illustration of this scheme, the set of equations is decoupled by employing its simplest 
version, in which multispin correlations are neglected. By imposing the condition of 
vanishing anisotropy we recover the same set of effective-field equations obtained by 
Tucker (1988). Within this approximation we discuss the critical temperature and 
the tricritical point at which the system undergoes to a first-order phase transition. 
It should be emphasised that herein we are particularly concerned with the type of 
information which can be relevant in order to elucidate the predictions of the newly 
developed effective-field theory (Tucker 1988) as well as to investigate the effects of 
the single-ion anisotropy in the magnetic system under consideration. Thus, we have 
restricted ourselves to examine such aspects on a phase diagram of the considered 
anisotropic BEG model, on a honeycomb lattice structure. 

Following the formulation of Fittipaldi and Siqueira (1986) for the anisotropic 
BEG model, the two relevant statistical-mechanical quantities (S,) and (S:) may be 
evaluated from the following set of equations 

where K,, = PJ,,, Ki, = PJG (with P = (kBT) - ' ) ,  V, = a/?, (p = x,y) are the two 
differential operators, (. . .) denotes the standard thermal average and the functions 
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f (x ,  y )  and g(x,  y )  are defined by 

which satisfy the following conditions 

By using the van der Waerden identities for the spin-one Ising spins, as shown by 
Siqueira and Fittipaldi (1985), equations (2) may be rewritten in a more useful form: 

where the operator functions F,(S,, S,?; V,) and G,(S,, S,?; VJ)  are given by 

F,(S , ,S; ;  V,) = 1 + sinh(K,V,)S, + (cosh(K,,V,) - 1)s; 

G,(S,, S:; VJ = 1 + (exp(K,;V,) - 1)s:. 

( 6 4  

(6b) 

Now, as has already been successfully discussed by Tucker (1988), the two products 
over j and j’ appearing in ( 5 4  and (5b), which are over the same set of first-neighbour 
spins of site i, may be multiplied together, and by using the local spin kinematic 
spin-one relations referred to above, ( 5 4  and (5b) can be recast as 

where 

in which we have introduced the notation 

xij = sinh(K,V,) B.. 11 = cosh(KijV,) yij = exp(KhVy). (9) 

We should note that (7a) and (7b) with D = 0 reduce to the equations obtained by 
Tucker (1988) if correlations between different spins are neglected at this stage of the 
formalism. 

At this point it is worth mentioning that the exact set of equations (7a) and (7b) is 
particularly amenable to the use of various approximate schemes which can explicitly 
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and systematically include effects of correlations. Firstly, we should note that (7a)  and 
(7b) provide a set of relations between the quantities ( S y )  (n  = 1,2) and associated 
multispin correlation functions of the various sites. In order to illustrate such a type of 
exact relations, we now particularise (7a)  and (7b) for the case of a honeycomb lattice 
structure, in which by performing a tedious but straightforward calculation yields the 
following expressions for ( S i )  and ( S f )  : 

In arriving at this set of equations, we have used properties of the exponential operators, 
such as @'even(Vx)f(~,~)lx=o;j=O = 0 and @odd(Vx)g(x,y) lx=O;y=O = 0, valid for any euen 
and odd functional @ ( V x ) ,  which are derived by using relations (4). In earlier works 
(Kaneyoshi et a1 1981, Taggart and Fittipaldi 1982) on the two-state Ising models, the 
effects of correlations has successfully been included by the use of an analogous set 
of exact identities. For this purpose, one should generate a new set of exact formal 
identities for all the relevant multispin correlations appearing in the right-hand sides 
of both (loa) and (lob), by using the following generalised spin identities 

in which {i} denotes any function of Ising variables at sites other than the ith. 
Thus, in a similar way, equations (loa) and (lob) can be used as a basis for various 
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approximation schemes which may explicitly take into account correlation effects. Here, 
as an illustration of the method, we restrict ourselves to the simplest approximation in 
which all high-order spin correlations on the right-hand sides of (loa) and (lob) are 
neglected. It is clear that within this approximation the strict criticality of the system is 
lost (in particular, the critical exponents are going to be the classical ones), and the real 
dimensionality of the system is only partially incorporated through the coordination 
number of the lattice. Nevertheless, as has already been discussed in several works on 
spin-one Ising systems (Tucker 1988, Siqueira and Fittipaldi 1986, Kaneyoshi 1986), 
such a framework is quite superior to the ordinary mean field approximation (MFA) 
and provides in particular a vanishing critical temperature for one-dimensional systems. 
This is so because in this type of treatment relations such as S; = 0,1 as well as Sp = S, 
and Sp = S;, are taken exactly into account, while in the usual MFA all the self- and 
multi-spin correlations are neglected. 

Based on this approximation (i.e. decoupling the multispin correlations as 
(S,S,S,?) ‘v (S,)(S,)(S;); (S,S,”S,‘) 1. (S,)(S,”)(S,”) and so on) the magnetisation m = (S,) 
and the quadrupolar moment q = (S:) can be evaluated from the following set of 
mutually coupled equations 

m = 3A,,m + A,,m3 
4 = Bo, + 3B2,m2 

where the coefficients A,,(q, T) and B,,(q, T), which are q- and T-dependent (with the 
exception of A, , ) ,  are given by 

A,,  = exp(K’V,) sinh(KV,)[l + q(exp(K’V,) cosh(KV,) - 1)12f(x,y)l,,o,,,o 

A,, = exp(3K’VJ sinh3(KV,)f(x, ~)l.=,;,=, 
(134 

(13b) 

and 

Here the subscripts v and z denote the power of m and the coordination number, re- 
spectively. The set of equations (12) can easily be generalised for arbitrary coordination 
number z .  

Now let us address our attention to the study of the transition temperature and 
the tricritical point of the system. By expanding in an interactive procedure the RHS of 
(12a), by using (12b) one obtains in general an equation for m of the form 

m = am + bm2 + cm3 + * ( ( .  (15) 

The second-order phase transition line is then determined by 1 = a, i.e. 

1 = 3 exp(K’V,) sinh(KV,)[l+ q,(exp(K’V,) cosh(KV,) - 1)I2f(x, y)l,=o;,=o 

where 4, is the solution of 
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In the vicinity of the second-order phase transition line, the magnetisation m is given 
by 

m2 = (1 - a)/b. (18) 

The RHS must be positive. If this is not the case, the transition is of the first order, and 
hence the point at which a = 1 and b = 0 is the tricritical point (Benayard et a1 1985). 

At this point, in order to obtain the expression for b, let us substitute 

(19) 2 4 = 4 0 + q l m  

into (12b). The expression for q1 is then given by 

with 

e = 3[exp(K’V,) cosh(KV,) - 11 [l  + q,(exp(K’V,) cosh(KV,) - 1)12g(x,y)l,_o;y=o. (22) 

Substituting (19) into (12a), the expression of b in (15) is given by 

Thus equations (16), (17), (20), and (23) are the expressions of the anisotropic BEG 
model with z = 3 for evaluating the second-order phase transition line and the tricritical 
point. The equations can be easily calculated by the use of a mathematical relation 

We have solved numerically the relation (a = 1, with b < 0) and the critical 
condition (a = 1 and b = 0, with c < 0), which yield, respectively, the critical frontiers 
which separate the ferromagnetic phase from any other phase and the tricritical point 
at which the phase transition changes from second to first order. Moreover, in order to 
determine the first-order transition lines one can, for instance, proceed in the following 
way. Firstly, one considers the BEG model in the presence of an external magnetic 
field, H,, by adding a term -pH,  xi Si to the system Hamiltonian in (l), where p 
is the Lande factor times the Bohr magneton. The magnetisation m = (Si) and the 
quadrupolar moment q = (Sf) are now given by the same set of relations (7) in which 
the variable x, appearing in function f(x,y) and g(x,y) defined in (3), is replaced by 
x + h, where h = pPH,.  With this modification the symmetry properties associated with 
the variable x pointed out in (4) are then broken. Accordingly, in order to evaluate 
thermodynamical properties it is useful to expand the RHS of (7a) and (7b) with respect 
to h and retain only its first-order terms. If this is done, then one may write 

exP(qMJ(P)  = +(P + 4. 

(S i )  = (9)  + ( k ) h  
( S ? )  = (6) + ( L ) h  
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where 

in which f ( x , y )  and g ( x , y )  are defined as above (equations (3a) and (3b)), and 

J b , Y )  = f(X,Y)[l -g (x , y ) l  g(x,Y) = g(x,y)[l -f(.%Y)tanhxI. (26) 

Hence, from equations (24a) and (24b) it is seen that the presence of the magnetic field 
introduces to the RHS of equations (loa) and (lob) even and odd correlation functions 
respectively. Then the formalism is developed in the same way as before and it is 
found that, by the use of the same sort of approximate scheme (in which multispin 
correlations are neglected), one derives equations analogous to (12). With this new set 
of equations (in which the coefficients of the even and odd powers of m on the RHS 
of (12a) and (12b) respectively are no longer null), one obtains the equation of state 
m ( T , H ) .  In the case of a first-order phase transition, the isotherms in the ( m - H )  plane 
have the same typical shape as that of the van der Waals isotherms (see, for instance, 
Stanley 1971) and, as usual, the position of these first-order transitions is obtained by 
applying the ‘equal areas’ Maxwell construction, from which T, as a function of D / J  
(for fixed values of J ’ / J )  is located in zero field. Here, for brevity, is not presented 
great details of such a procedure, referring the reader instead to the book by Reichl 
(1987). 

The phase diagram in the T-D plane is presented in figures 1 and 2, for corre- 
sponding typical fixed negative values of the ratio J ’ / J  = r .  As a first observation, 
we should note that the nature of variations of T, versus D reveal a common basic 
behaviour, which is the fact that all the critical transition lines decrease when D / J  
decreases, reaching the zero temperature limit at distinct values of D / J .  These results 
revise our predictions in figure 1 of the recent paper of Kaneyoshi et a1 (1988). 

As one can see from figure 1, the critical frontiers in the T-D plane present a 
peculiar behaviour. We find that for -1.0 < r < 0 the system exhibits tricritical points 
(full circles) and the first-order segments (broken regions of the curves with r = -0.5 
and x = -0.75) of the ferromagnetic phase boundary lines shows bulges, suggesting 
the occurence of the re-entrant phenomena. The situation, however, abruptly changes 
at x = -1.0. For x < -1.0 the tricritical point does not appear, but a re-entrant 
behaviour, now associated with the second-order transition lines, occurs as shown in 
the enlarged-scale curves of figure 2. The region of the phase diagram in the T-D 
plane in which competing bilinear and biquadratic interactions may occur (i.e., c( < 0) 
and -1.0 < D / J  < 1.0 is, indeed, quite interesting and has been missed in most 
of the works published so far. Furthermore, the fact that the second-order phase 
boundary line labelled with r = -1.0 in figure 1 reaches the zero-temperature limit at 
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Figure 1. Nature of variation of the critical temperature ( k B T , / J )  with respect to the 
reduced anisotropy parameter D / J  for the honeycomb lattice. Numerical figures associated 
with each curve are the various values of the reduced biquadratic parameter CY = J ' / J .  The 
full circles denote the tricritical points. The continuous and broken regions of the curves 
refer to the second- and first-order phase transitions, respectively. 

O/J  

Figure 2. As in figure 1, but with enlarged scales in order to emphasise the re-entrant 
behaviour of curves labelled in figure 1 with z = -1.4, z = -1.2 and 2 = -0.5. 

D = 0, in complete agreement with Monte Carlo simulations (De Alcantara Bonfim 
and Obcemea 1986, Wang et a1 1987), mean field renormalisation group technique (De 
Alcantara Bonfim and Sa Barreto 1985) as well as with the exact solution of the model 
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on the Bethe lattice (Chakraborty and Tucker 1986), gives to the present treatment 
some qualitative and, to a certain extent, quantitative confidence. 

In conclusion, the applicability of the correct treatment proposed by Tucker (1988) 
on the Honmura-Kaneyoshi exponential operator technique for the anisotropic BEG 
model has been demonstrated and used to investigate, in its simplest approximate 
version, the nature of variation of the critical temperature in the T-D plane as well 
as the dependence of the position of the tricritical point, on a honeycomb lattice. It is 
shown that this effective-field treatment (Tucker 1988) leads to the conclusion that the 
transition temperature has bulges for negative SI (except for SI = -l.O), suggesting the 
occurence of re-entrant phenomena. 

Finally, we would like to conclude by briefly mentioning that after this work 
was finished we received a preprint of a Comment by Dr J W Tucker in which he 
also addressed himself to the study of the tricritical behaviour of the anisotropic BEG 
model by means of the recently developed effective-field theory (Tucker 1988) for 
the honeycomb, square and cubic lattices. His work, however, is restricted to the 
presentation of numerical results for the dependence of the position of the tricritical 
point for a range of biquadratic exchange strengths where the critical frontier for the 
second-order transition is relatively well behaved. Here, besides the analysis of the 
dependence of the tricritical point we have also investigated the phase diagram in the 
T - D  plane for both first- and second-order transition lines. We believe that not only 
would the present study put to test the proposed (Tucker 1988) effective-field theory, 
but would also help to provide an independent contribution to the present problem. 
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